Promoter independent abortive transcription assays unravel functional interactions between TFIIB and RNA polymerase.
نویسندگان
چکیده
TFIIB-like general transcription factors are required for transcription initiation by all eukaryotic and archaeal RNA polymerases (RNAPs). TFIIB facilitates both recruitment and post-recruitment steps of initiation; in particular, TFIIB stimulates abortive initiation. X-ray crystallography of TFIIB-RNAP II complexes shows that the TFIIB linker region penetrates the RNAP active center, yet the impact of this arrangement on RNAP activity and underlying mechanisms remains elusive. Promoter-independent abortive initiation assays exploit the intrinsic ability of RNAP enzymes to initiate transcription from nicked DNA templates and record the formation of the first phosphodiester bonds. These assays can be used to measure the effect of transcription factors such as TFIIB and RNAP mutations on abortive transcription.
منابع مشابه
The linker domain of basal transcription factor TFIIB controls distinct recruitment and transcription stimulation functions
RNA polymerases (RNAPs) require basal transcription factors to assist them during transcription initiation. One of these factors, TFIIB, combines promoter recognition, recruitment of RNAP, promoter melting, start site selection and various post-initiation functions. The ability of 381 site-directed mutants in the TFIIB 'linker domain' to stimulate abortive transcription was systematically quant...
متن کاملFunctional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation.
The general transcription factor TFIIB is required for accurate initiation, although the mechanism by which RNA polymerase II (RNAP II) identifies initiation sites is not well understood. Here we describe results from genetic and biochemical analyses of an altered form of yeast TFIIB containing an arginine-78 --> cysteine (R78C) replacement in the "B-finger" domain. TFIIB R78C shifts start site...
متن کاملStructural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms.
The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-term...
متن کاملSingle molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity
Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we ...
متن کاملRedox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2
TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 977 شماره
صفحات -
تاریخ انتشار 2013